A Method for Lung Boundary Correction Using Split Bregman Method and Geometric Active Contour Model
نویسندگان
چکیده
In order to get the extracted lung region from CT images more accurately, a model that contains lung region extraction and edge boundary correction is proposed. Firstly, a new edge detection function is presented with the help of the classic structure tensor theory. Secondly, the initial lung mask is automatically extracted by an improved active contour model which combines the global intensity information, local intensity information, the new edge information, and an adaptive weight. It is worth noting that the objective function of the improved model is converted to a convex model, which makes the proposed model get the global minimum. Then, the central airway was excluded according to the spatial context messages and the position relationship between every segmented region and the rib. Thirdly, a mesh and the fractal theory are used to detect the boundary that surrounds the juxtapleural nodule. Finally, the geometric active contour model is employed to correct the detected boundary and reinclude juxtapleural nodules. We also evaluated the performance of the proposed segmentation and correction model by comparing with their popular counterparts. Efficient computing capability and robustness property prove that our model can correct the lung boundary reliably and reproducibly.
منابع مشابه
Convex Image Segmentation Model Based on Local and Global Intensity Fitting Energy and Split Bregman Method
We propose a convex image segmentation model in a variational level set formulation. Both the local information and the global information are taken into consideration to get better segmentation results.We first propose a globally convex energy functional to combine the local and global intensity fitting terms. The proposed energy functional is then modified by adding an edge detector to force ...
متن کاملناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کاملFast Texture Segmentation Based on Semi-Local Region Descriptor and Active Contour
In this paper, we present an efficient approach for unsupervised segmentation of natural and textural images based on the extraction of image features and a fast active contour segmentation model. We address the problem of textures where neither the gray-level information nor the boundary information is adequate for object extraction. This is often the case of natural images composed of both ho...
متن کاملActive Contour Model Coupling with Higher Order Diffusion for Medical Image Segmentation
Active contour models are very popular in image segmentation. Different features such as mean gray and variance are selected for different purpose. But for image with intensity inhomogeneities, there are no features for segmentation using the active contour model. The images with intensity inhomogeneities often occurred in real world especially in medical images. To deal with the difficulties r...
متن کاملRobust Active Contour Segmentation with an Efficient Global Optimizer
Active contours or snakes are widely used for segmentation and tracking. Recently a new active contour model was proposed, combining edge and region information. The method has a convex energy function, thus becoming invariant to the initialization of the active contour. This method is promising, but has no regularization term. Therefore segmentation results of this method are highly dependent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015